Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 14(1): 945, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2252087

RESUMEN

The phenomenon of protein aggregation is associated with a wide range of human diseases. Our knowledge of the aggregation behaviour of viral proteins, however, is still rather limited. Here, we investigated this behaviour in the SARS-CoV and SARS-CoV-2 proteomes. An initial analysis using a panel of sequence-based predictors suggested the presence of multiple aggregation-prone regions (APRs) in these proteomes and revealed a strong aggregation propensity in some SARS-CoV-2 proteins. We then studied the in vitro aggregation of predicted aggregation-prone SARS-CoV and SARS-CoV-2 proteins and protein regions, including the signal sequence peptide and fusion peptides 1 and 2 of the spike protein, a peptide from the NSP6 protein, and the ORF10 and NSP11 proteins. Our results show that these peptides and proteins can form amyloid aggregates. We used circular dichroism spectroscopy to reveal the presence of ß-sheet rich cores in aggregates and X-ray diffraction and Raman spectroscopy to confirm the formation of amyloid structures. Furthermore, we demonstrated that SARS-CoV-2 NSP11 aggregates are toxic to mammalian cell cultures. These results motivate further studies about the possible role of aggregation of SARS proteins in protein misfolding diseases and other human conditions.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Animales , Proteínas Amiloidogénicas , Proteoma , SARS-CoV-2 , Mamíferos
2.
Sci Adv ; 8(45): eabp9540, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2119147

RESUMEN

De novo design methods hold the promise of reducing the time and cost of antibody discovery while enabling the facile and precise targeting of predetermined epitopes. Here, we describe a fragment-based method for the combinatorial design of antibody binding loops and their grafting onto antibody scaffolds. We designed and tested six single-domain antibodies targeting different epitopes on three antigens, including the receptor-binding domain of the SARS-CoV-2 spike protein. Biophysical characterization showed that all designs are stable and bind their intended targets with affinities in the nanomolar range without in vitro affinity maturation. We further discuss how a high-resolution input antigen structure is not required, as similar predictions are obtained when the input is a crystal structure or a computer-generated model. This computational procedure, which readily runs on a laptop, provides a starting point for the rapid generation of lead antibodies binding to preselected epitopes.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Humanos , Epítopos , Afinidad de Anticuerpos , Anticuerpos Monoclonales/química , Modelos Moleculares , SARS-CoV-2 , Antígenos
3.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1947766

RESUMEN

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Afinidad de Anticuerpos , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Afinidad de Anticuerpos/genética , Microscopía por Crioelectrón , Entropía , Ingeniería Genética , Humanos , Unión Proteica , Dominios Proteicos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
J Am Chem Soc ; 144(29): 13026-13031, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1931307

RESUMEN

Post-translational protein-protein conjugation produces bioconjugates that are unavailable via genetic fusion approaches. A method for preparing protein-protein conjugates using π-clamp-mediated cysteine arylation with pentafluorophenyl sulfonamide functional groups is described. Two computationally designed antibodies targeting the SARS-CoV-2 receptor binding domain were produced (KD = 146, 581 nM) with a π-clamp sequence near the C-terminus and dimerized using this method to provide a 10-60-fold increase in binding (KD = 8-15 nM). When two solvent-exposed cysteine residues were present on the second protein domain, the π-clamp cysteine residue was selectively modified over an Asp-Cys-Glu cysteine residue, allowing for subsequent small-molecule conjugation. With this strategy, we build molecule-protein-protein conjugates with complete chemical control over the sites of modification.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Cisteína/química , Humanos , Proteínas/química , SARS-CoV-2
5.
Chem Sci ; 12(26): 9168-9175, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1272848

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a highly infectious disease that is severely affecting our society and welfare systems. In order to develop therapeutic interventions against this condition, one promising strategy is to target spike, the trimeric transmembrane glycoprotein that the virus uses to recognise and bind its host cells. Here we use a metainference cryo-electron microscopy approach to determine the opening pathway that brings spike from its inactive (closed) conformation to its active (open) one. The knowledge of the structures of the intermediate states of spike along this opening pathway enables us to identify a cryptic pocket that is not exposed in the open and closed states. These results underline the opportunities offered by the determination of the structures of the transient intermediate states populated during the dynamics of proteins to allow the therapeutic targeting of otherwise invisible cryptic binding sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA